Registry No. (\pm) -2, 61505-17-7; (\pm) -³H-2, 105164-40-7; 5, 81328-62-3; 6, 4342-60-3; (\pm) -7, 104762-26-7; (\pm) -8 (acid) (isomer 1), 105164-34-9; (\pm) -8 (acid) (isomer 2), 105164-35-0; (\pm) -8 (isomer 1), 105164-36-1; (\pm) -8 (isomer 2), 105164-37-2; (\pm) -8 (methyl ester) (isomer 1), 104762-29-0; (\pm) -8 (methyl ester) (isomer 2), 104762-30-3; (\pm) -9, 104762-32-5; (\pm) -10, 104762-31-4; ³H-10, 105164-38-3; (\pm) -³H-10-al, 105164-39-4; 2-methyl-1-cyclopentene-1-carboxylic acid, 67209-77-2; (\pm) -trichodienal, 82096-03-5.

Asymmetric Synthesis of (R)- and (S)- $[2-{}^{2}H_{1}]$ Glycine

Robert M. Williams,*[†] Dongguan Zhai, and Peter J. Sinclair

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received May 19, 1986

Chiral glycine¹ has become an increasingly important substance for the study of numerous biochemical reactions and serves as a starting material for stereospecific conversions into other important, labeled compounds such as chiral acetic² and chiral glycolic³ acids. A number of syntheses of chiral glycine have been reported¹ that involve one or two enzyme-mediated transformations or involve unambiguous chemical syntheses from chiral, nonracemic starting materials such as other amino acids or sugars. The somewhat capricious nature of the enzyme-mediated syntheses and the tediousness of the multistep chemical syntheses make this deceptively simple molecule a challenging and important target for efficient asymmetric synthesis. We recently reported⁴ a new asymmetric synthesis of α -amino acids based on the chiral electrophilic glycinate 2. In this paper, we further demonstrate the utility of this method by reporting an efficient two-step stereospecific synthesis of (R)- and (S)- $[2-{}^{2}H_{1}]$ glycine from the readily available⁴ glycinates 1.

Bromination of (-)-5(S), 6(R)-1 as previously described⁴ furnishes the bromide 2 as a white solid (Scheme I). Reduction of 2 with D_2 at 40 psi in the presence of catalytic PdCl₂ in D₂O/THF at 25 °C for 40 h directly furnishes (S)- $[2-^{2}H_{1}]$ glycine in 51–54% yield. The isotopic purity of this material at C-2 was determined to be at least 84-90% and the optical purity (% ee) was established at 77-82% according to the procedure of Armarego et al.⁵ Specifically, acylation of 3 with (-)-camphanyl chloride (4) furnished the amides (5a,b), which were examined by ¹H NMR (Scheme II). Comparison of the resonances near δ 4 with that of the amides 5c prepared from racemic $[2-{}^{2}H_{1}]$ glycine obtained from racemic 1 rigorously established the stereochemical purities of (S)- and (R)-3. The isotopic purity was similarly obtained by comparing the ¹H NMR spectra of the camphanyl amide 5d of glycine with those of the chiral glycine derivative (Figure 1).

The stereochemical outcome of the reduction clearly indicates that the C-D bond is formed from the sterically less encumbered face of the presumed putative imine 6 (Scheme III).

It is noteworthy that reduction of (-)-5(S),6(R)-2 with Bu₃SnD followed by hydrogenolysis $(H_2/Pd/C)$ produced

Figure 1. ¹H NMR spectra of camphanyl amides at 270 MHz between δ 4.0 and 4.4: (a) 5d; (b) 5c; (c) 5a; (d) 5b.

(R)-3, in 60% ee (ie., the *reverse* stereochemical outcome from the hydrogenolysis).

Similarly, the conversion of (+)-5(R),6(S)-1 into (R)-3 proceeds with equal efficiency. Although the optical purity of the chiral glycine obtained by the present method is slightly lower than that reported previously,^{1,5} the relatively high overall chemical yield and experimental simplicity of this synthesis render this contribution a practical alternative to the significantly more laborious syntheses.¹ Furthermore, since the isotopic atom is introduced in the very last transformation, this methodology should be particularly appealing to those interested in synthesizing [2-³H₁]glycine.

Experimental Section

(S)-[2-²H₁]Glycine. The bromide (-)-5(S),6(R)-2 (0.274 mmol, 1 equiv) is dissolved in dry THF (5 mL) and D₂O (1 mL) and placed in a pressure bottle that had been base washed with NaOD/D₂O. To this solution was added PdCl₂ (14.6 mg, 0.082 mmol, 0.3 equiv) and the vessel was charged with D₂ at 40 psi.

[†]Fellow of the Alfred P. Sloan Foundation, 1986–1988. NIH Research Career Development Awardee 1984–1989. Eli Lilly Grantee, 1986–1988.

⁽¹⁾ Ohrui, H.; Misawa, T.; Meguro, H. J. Org. Chem. 1985, 50, 3007 and references cited therein.

⁽²⁾ Kajiwara, M.; Lee, S. F.; Scott, I. J. Chem. Soc. Chem. Commun. 1978, 987.

⁽³⁾ Retey, J.; Robinson, J. A. Streospecificity in Organic Chemistry and Enzymology; Verlag Chemie: Weinhem, 1982; Vol. 13, p 161.
(4) Sinclair, P. J.; Zhai, D.; Reibenspies, J.; Williams, R. M. J. Am.

Chem. Soc. 1986, 108, 1103. (5) Armarego, W. L. F.; Milloy, B. A.; Pendergast, W. J. Chem. Soc., Perkin Trans 1 1976, 2229.

The mixture was allowed to stir for 40 h at 25 °C, and the pressure was reduced to 1 atm and the mixture purged with N₂. The mixture was filtered through a pad of Celite, evaporated to an oily residue, and triturated with CH₂Cl₂, THF, and Et₂O, leaving the insoluble *crystalline* amino acid [23.6 mg (54%)] as its hydrohalogen salt. The free amino acid was obtained by dissolution of the hydrohalogen salt in H₂O (57.5 mg) and eluting the solution with 1 N NH₄OH through an ion-exchange resin (Dower 50W-X8, 20-50 mesh, in H⁺ form after washing with 1 N NaOH and 10% H₂SO₄). Recrystallization from MeOH yielded white *crystals*: 22.5 mg; mp 235.5 °C dec (lit.⁵ mp 234 °C dec); 82% isolated yield (from the amino acid salt); ¹H NMR (270 MHz) δ 3.65 (t).

Determination of Optical Purity (Amides 5). The crude amino acid (as the hydrohalogen salt obtained from the hydrogenolysis (6.9 mg, 0.044 mmol, 1.0 equiv) in 0.1 N NaOH solution (2.2 mL, 0.218 mmol, 5.0 equiv) was added to a stirred solution of (-)-camphanyl chloride (4; 18.8 mg, 0.087 mmol, 2.0 equiv) in toluene (1 mL) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C and then 4.5 h at 25 °C. The mixture was thoroughly extracted with CHCl₃ (discarded), the aqueous phase was acidified with 1 N HCl, and the resultant solution was thoroughly extracted with CH₂Cl₂. The combined extracts were evaporated and directly analyzed by ¹H NMR (CDCl₃, 270 MHz). The spectroscopic properties of the amides 5 so obtained were identical with those previously reported.⁵ The region between δ 4 and 5 was utilized for the determination of optical and isotopic purity as illustrated in Figure 1.⁶

Acknowledgment. We thank the National Science Foundation for their generous support of this work.

Registry No. (-)-(5S,6R)-1, 100516-54-9; (+)-(5R,6S)-1, 105228-46-4; 2, 100570-94-3; (S)-3, 62061-66-9; (R)-3, 62061-53-4; (S)-3-HBr, 105183-10-6; 4, 39637-74-6; 5a, 88315-13-3; 5b, 88291-60-5; 5d, 62061-66-9.

⁽⁶⁾ The percent ee and isotopic purities were obtained by calculation from the ¹H NMR integrals. Since the peaks from the proteo species 5d overlap with portions of the peaks from 5a and 5b, the resolved portion of the signals at δ 4.3 was accurately integrated and the calculated remaining signals that were not resolved were substracted from the portion of the spectrum between δ 4.0 and 4.1 (for 5a, for example). Each spectrum was recorded at least twice, and the integrals for each spectrum were measured at least twice, and averaged.